Definitions from Wiktionary (Jacobson radical)
▸ noun: (mathematics, ring theory) The operation that produces (from a given ring) the ideal of elements which annihilates all simple modules (over the given ring); the result of this operation. The Jacobson radical of a ring R is denoted J(R).
▸ Words similar to jacobson radical
▸ Usage examples for jacobson radical
▸ Idioms related to jacobson radical
▸ Wikipedia articles (New!)
▸ Words that often appear near jacobson radical
▸ Rhymes of jacobson radical
▸ Invented words related to jacobson radical
▸ noun: (mathematics, ring theory) The operation that produces (from a given ring) the ideal of elements which annihilates all simple modules (over the given ring); the result of this operation. The Jacobson radical of a ring R is denoted J(R).
▸ Words similar to jacobson radical
▸ Usage examples for jacobson radical
▸ Idioms related to jacobson radical
▸ Wikipedia articles (New!)
▸ Words that often appear near jacobson radical
▸ Rhymes of jacobson radical
▸ Invented words related to jacobson radical