Definitions from Wiktionary (generalized continuum hypothesis)
▸ noun: (set theory) The hypothesis that, for each ordinal α, there is no cardinal number strictly between א_α and 2^(א_α), i.e. 2^(א_α)=א_(α+1).
▸ Words similar to generalized continuum hypothesis
▸ Usage examples for generalized continuum hypothesis
▸ Idioms related to generalized continuum hypothesis
▸ Wikipedia articles (New!)
▸ Words that often appear near generalized continuum hypothesis
▸ Rhymes of generalized continuum hypothesis
▸ Invented words related to generalized continuum hypothesis
▸ noun: (set theory) The hypothesis that, for each ordinal α, there is no cardinal number strictly between א_α and 2^(א_α), i.e. 2^(א_α)=א_(α+1).
Similar:
continuum hypothesis,
hypercontinuum,
aleph-one,
limit ordinal,
Hartogs number,
epsilon number,
continuum,
limit cardinal,
aleph-null,
omega,
more...
▸ Words similar to generalized continuum hypothesis
▸ Usage examples for generalized continuum hypothesis
▸ Idioms related to generalized continuum hypothesis
▸ Wikipedia articles (New!)
▸ Words that often appear near generalized continuum hypothesis
▸ Rhymes of generalized continuum hypothesis
▸ Invented words related to generalized continuum hypothesis