Definitions from Wiktionary (Riemann-Lebesgue lemma)
▸ noun: (mathematics) A lemma, of importance in harmonic analysis and asymptotic analysis, stating that the Fourier transform or Laplace transform of an L1 function vanishes at infinity.
▸ Words similar to Riemann-Lebesgue lemma
▸ Usage examples for Riemann-Lebesgue lemma
▸ Idioms related to Riemann-Lebesgue lemma
▸ Wikipedia articles (New!)
▸ Words that often appear near Riemann-Lebesgue lemma
▸ Rhymes of Riemann-Lebesgue lemma
▸ Invented words related to Riemann-Lebesgue lemma
▸ noun: (mathematics) A lemma, of importance in harmonic analysis and asymptotic analysis, stating that the Fourier transform or Laplace transform of an L1 function vanishes at infinity.
Similar:
Lebesgue integral,
Riemann-Roch theorem,
Mittag-Leffler's theorem,
Riemann hypothesis,
Riemann integral,
five lemma,
Li's criterion,
Riemann-Stieltjes integral,
Riemann sum,
Runge's theorem,
more...
▸ Words similar to Riemann-Lebesgue lemma
▸ Usage examples for Riemann-Lebesgue lemma
▸ Idioms related to Riemann-Lebesgue lemma
▸ Wikipedia articles (New!)
▸ Words that often appear near Riemann-Lebesgue lemma
▸ Rhymes of Riemann-Lebesgue lemma
▸ Invented words related to Riemann-Lebesgue lemma